किसी $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ के लिये, व्यंजक $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ होगा
$13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $
$13 - 4\,{\cos ^6}\,\theta \,$
$13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $
$13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $
$(\sec 2A + 1){\sec ^2}A = $
$\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}}$ का मान होगा
यदि $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ तो $k$ का आंकिक मान है
यदि $\cos A = \frac{3}{4}$, तब $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा